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Abstract— The so-called fluid~tube continuum approach to describe the thermal-hydraulic performance of

heat exchangers is critically reviewed. Special attention is given fo the correct formulation of the boundary

conditions, and a derivation of the equations starting from basic principles is presented. The resulting linear

system of partial differential equations, a Laplace equation and two linear convection equations, is solved

numerically by a finite element approximation method based on the Jeast squares minimum principle, Finally,
the numerical results are compared with experimental data. The agreement is good.

NOMENCLATURE

g approximation matrix;

¢,, specilic heat at constant pressure
kg ' K™'];

D, deformation tensor [s™1];

DDX, DDY,, differentiation matrices [m~1];

E;. element matrix;

F. force applied on fluid element [IN];

g,  gravitational acceleration [m s~ *];

h, scale factors in orthogonal curvilinear c¢o-
ordinate system;
.. local heat transfer coefficlent [Wm™2 K ~'};

H, volumetric heat transfer coefficient

[Wm K™ '];

viscous energy transport term [W];

. kinetic and viscous energy loss factor [Pa s?];
K, energy loss factor per unit mass, friction factor
per unit length [m~"];

virtual mass tensor [kgl;

virtual mass tensor per uni mass;

unit vector normal io boundary;

shape functions ;

pressure [Pa};

position vector of moving fluid element [m];
continuously distributed {orce term per unit
mass [ms ];

i residual:

r.  radial coordinate [m];

r,  position vector f[m];

R K/ fm %3 5],

5,  conlinuously distributed heat scurce term per
unit volume [Wm™*];

system matrix;

£, time[s];

T, shell-side temperature [K];

kinetic energy of fluid element [J];

u,  shell-side radial velocity [ms~1];

v,  shell-side axial velocity [m s~ 1];

¥,  shellside velocity fm s~ '];
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w, tube-side velocity [ms™17;
W, kinematical vorticity number
z, axial co-ordinate [m].

Greek symbols

¥ shell-side porosity;

tube-side porosity;

n,  dynamic viscosity {Pas];

7. local co-ordinate (radial) ;

@2, tube-side temperature [K];

4,  thermal conductivity [W m" 'K "*]:

£, local co-ordinate {axial);

&, co-ordinates In orthogonal corvilinear system
[m];

p, density [kgm 3]:

¢, approximation;

viscous dissipation term [W];

e,  vorticity divided by porosity [s 1.

Superscripts
~, mean value;
*,  hquid volume, in contrast to liquid-tube
volume;
., motional time derivative;
p,  integration point index.

Subscripts

p.  integration point index.

Del operators in Cartesian co-prdinates

(V), = (arad $); = f—f eradient

VA =div A =€—‘5
éx

¥

divergence (1};

(V x A); = (curl A), = &, 6—’1",
x;

J

curl (2};

0A;
(VA)ij =T j;
Ox,

gradient tensor;

d9A;
(AV); = 763&1’ transposed gradient tensor;
i
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i l convective time
oA, J derivatives;

(v-VA); = v,
dx
o (2A) a4, . o
-\ =] =2~ local time derivatives;
(&1 ot /; 4
. D¢ ¢
A T A l
motional time derivative ;
DA ¢A
== V'VA,
Dt ot .
) A
Vi =V (Vg) = (°¢ :
0x; \0x;

(V2A); = [V(V-A) =V x (V x A)];

¢ ((7Ai>
=Ty A )b
0x;\ 0x;

VA = J(VA+AV)

Laplacians;

0 (VxA); —(VxA),:
+1 (~(V x A); 0 (V x A),
(V x A), —{V x A); 0

Gibbsian decomposition ;

(1) two repeated indices denote summation over
these indices ;

0 if i=j or i=k or j=k
+1 i (4,j,k) =(1,2,3)
(2) &y = or (2,3,1) or (3,1,2),

or (1,3,2) or

Levi-Civita tensor:

(3,2, 1),

1. INTRODUCTION

EspECIALLY when heat exchangers and steam
generators for Liquid Metal cooled Fast Breeder
Reactors (LMFBR}) are considered, a high integrity is
required and, to avoid unacceptable thermal stresses. a
thorough knowledge of the 3-dim. temperature
distribution is necessary for both design and licensing
purposes.

In Fig. 1, an example of a straight-tube shell-and-
tube heat exchanger is presented. The flow distribution
on the shell side of a shell-and-tube heat exchanger or
steam generator has a significant influence on the
temperature distribution across the tube bundle and,
consequently, on the thermal stresses caused by the
temperature gradients. For that reason, this paper will
mainly be concerned with the equations describing
flow.

The equations to be solved are well established ; they
are the classical partial differential equations expres-
sing conservation of mass, linear momentum and

energy for a Newtonian fluid. Tosimplify the analysis, it
will be assumed that the density, p. the viscosity, », and
the conductivity. 4, are constants. In this way natural
convection need not be considered.

Under these assumptions, the buasic cquations
describing the fluid motion are independent of the
energy equation and they reduce 1o the well known
requirement of divergence-free low and to the Navier -
Stokes equations

(See ref. {1] lor a thorough investigation ol the
mathematical properties of the Navier-Stokes
equations.}

To obtain a well-posed partial differential probiem.
initial and boundary conditions must be prescribed for
the Navier—Stokes equations. The initial condition s
that v(r,(0) must be prescribed at time 7 = 0. and a
boundary condition at a boundary completely enclos-
ing the fluid is that the velocity, v. may be prescribed
for all times r > 0. For the tube bundle under
consideration, this means that v = 0 must also be
prescribed at the boundaries of the rigid tubes. It is
worthwhile to emphasize the fact that the use of the
above-mentioned initial and boundary conditions
excludes the prescription of the pressure, p, as an initia
or boundary condition [2].

From the energy equation and the Navier-Stokes
equations, an equation for the temperature. 7. can be
derived.

DT

I, Dr = V2T + 23D D. {34

£
In equation (3} D = (Vv+vV),/2 18 the deformation
tensor, and the heat production by radiation has been
neglected. (For a detatled derivation of both the
Navier-Stokes equations and the temperature equa-
tion see rel, [3].)

Although the equations and boundary conditions
needed for the prediction of the shell-side flow pattern
are well-established, it is, however, also a well-known
fact that the Navier-Stokes equations are difficult to
solve. Even for simple geometries, analytical and
numerical solutions can only be obtained for relatively
low Reynolds numbers. Furthermore. the very simple,

from a mathematical point of view, equations
describing incompressible, irrotational flow. i.e.
Voev = (), [y
Vxy=0 {4

can hardly be solved if a tube bundile is present, due to
the very complex geometry. The requirement tha
n-v = 0 at all tube walls is prohibitive.

Due to the reasons mentioned above, a solution i
the Navier-Stokes equations is completely out of the
question and approximations must be introduced
Several investigators have attempted to describe the
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Fi1G. 1. Example of straight-tube shell-and-tube heat exchanger.

shell-side flow distribution approximately by partial
differential equations describing a so-called fluid-tube
continuum [4-7].In the Appendix a derivation of these
equations will be presented. The equations describing
motion in the fluid—tube continuum are shown to have
essentially the same character as the well-known Euler
equations describing inviscid fluid dynamics ; the only
difference being a porosity factor, y, representing the
ratio of the volume occupied by the fluid and the total
volume, and a continuously distributed force term, Q,
accounting for the resistance of the tubes. Also, the
equation describing the temperature in a fluid—tube
continuum contains a continuously distributed heat
source term, S, accounting for the heat transport to the
tubes.

In the next section, the fluid—tube continuum
equations are postulated and worked out to a suitable
basis for numerical treatment. In Section 3, the finite
element method, used to solve the resulting equations,
is explained briefly. In Section 4, numerical results for
anintermediate heat exchanger designed fora LMFBR
plant are shown and compared with experimental data.

Finally, in the Appendix, a derivation of the fluid—
tube continuum equations will be presented starting
from the fundamental conservation equations (1)~(3).

2. FLUID-TUBE CONTINUUM EQUATIONS
AND BOUNDARY CONDITIONS

Starting from the fundamental conservation equa-
tions (1)}«3), the fluid—tube continuum equations are
derived in the Appendix, the equations resulting being
[4-7]

V-(y¥) =0, (5)
Dv . . _B_
E—V(g r p>+Q (6)
and
DT
pcht S (7)

In equations (5)(7), ¥ is the mean velocity, p the mean
pressure, and T the mean temperature. The force
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distribution, Q, and the heat source distribution, S, are
additional unknowns for which additional expressions,
either coming from experimental data or from
analytical solutions of relatively simple problems, must
be found. In all previous analyses [4-7], only the
steady-state expression for Q was applied, which leads
to physically doubtful results when transient pheno-
mena are considered. In the Appendix, a possibility of
modifying Q in such a way that unsteady phenomena
can be described will be proposed.

2.1. The flow field

In classical (inviscid) fluid dynamics, it is customary
to eliminate the pressure from equation (6) by taking
the curl of it and using equation (5), resulting in an
expression describing the convection of vorticity
divided by the porosity, @ = (V x ¥)/y,

Do 5 1 v ,

D o-D+ ; x Q (8)
where D = (Vv+vV)/2 is the so-called deformation
tensor. If V x Q = 0, equation (8) is exactly equivalent
to the Helmholtz form of the Euler equations [23].

The physical meaning of the so-called generalized
Helmholtz equation (8) is that the vorticity of a piece
of fluid (divided by the porosity) changes with a rate
@ D+(V x Q)/y during the motion of this piece
of fluid along its streamline. A consequence of this is
that the vorticity must be prescribed both as an initial
condition and as a boundary condition on the inflow
opening. If these latter conditions represent zero vorti-
city and if V x Q o —a, it follows from equation (8}
that V x v = 0 in the complete flow field. In this case.
equations (5) and (4) must be solved for v, however.
without boundary conditions on the individual tubes,
ie. for a relatively simple geometry. In general, the
conditionV x Q « — @ does not hold and, as a conse-
quence, vorticity is produced in the flow field. As a
matter of course, this vorticity, yo», must be solenoidal,
ie. V+(yw) = 0, since only in that case can the vorticity
be interpreted as V x v.

From equations(5)and (8)it can be derived thatifthe
condition V-(y@) =0 is prescribed at the inflow
boundary then y@ is automatically solenoidal in the
complete flow field (provided, of course, that at 1 = 0,
ya(r, 0} is solenoidal).

In the following discussion, the conditions for Q
under which the vorticity, y@, may be taken equal to
zero at the inflow boundary will be sought. For that
purpose, an orthogonal curvilinear co-ordinate system
with co-ordinates r = (&, &,, &5) will be considered. In
this co-ordinate system, &, is the co-ordinate in the
direction of the normal unit vector, n, at the inflow
boundary, and ¢, and &, are co-ordinates parallel to
that boundary [8]. Under the condition that @ = 0 at
the inflow boundary, the condition V + (@) = 0 at that
boundary can be written as

7 0D
Ve (yo) = > = 0.

dws
hy 084

Wout Zur and HAN De Bruux

The same condition includes. for the J .-component of
equation (8).

Fy Oy | (/(‘%thz U
hy c&y  vhiha \ 08,

Since, by definition. #; = n-v 4 4 at the inflow
boundary, both equations can be combined to give

1 [6Q.h, ¢Quh ]
e (QZA (t] l)::n-‘vx():i),
hih,

o<, e

Consequently, the inflow boundary condition & =
may be applied only if n*V x Q =0 at the inflow
boundary. In the following discussions. this latter
condition will always be assumed to hold

The difference between the Navier Stokes equations
and the Euler equations is the absence of the second
order term {1/p)V?v in the Euler equations. One of the
consequences of this absence is a simplification of the
boundary conditions. Instead of shell boundary
conditions for the three components of v for the Navier
Stokes equations, the boundary condition von = 0
holds for the Euler equations at the rigid solid shell.
This latter mathematical feature makes FEuler-like
equations especially well-suited for the description of a
fluid—tube continuum, in contrast to Navier-Stokes-
like equations, as will be showrn in the following
discussion.

From a physical point of view, the boundary
conditions in a fluid-tube continuum are that no fluid is
flowing out of the impermeable shell.i.e. v+ n = Qon the
shell. Of course, in a fluid-tabe continuum no
boundary conditions may be prescribed on the tubes - a
mean volumetric flow rate of fluid s passing across a
unit area containing tubes, and the local fluid velocity.
as it passes through the clearances between the tubes,
will not be considered. Additional boundary con-
ditions, ¢.g. for the velocity components parallel to the
wall, for the so-called turbulent tangential stress, or for
the vorticity, may not be prescribed. since in that case
thereis no reason why the same conditionis not applied
at  the boundaries of the individual tubes.
Consequently, from a physical poimnt of view, the
boundary conditions in a fluid-tube continuum
approximation have an Euler-like character.

The difference between the present study and the
earlier treatments [4 7] is that the latter authors did
not make use of the advantages of the Euler-like
character of the equations, whereas in this paper these
advantages will be fully exploited. In the loliowing part
of this section, equation (8) will further be simplified by
making use of an expression for Q.

2.2, Irrotational flow
In the Appendix it is proved that

N v Oy
Q= —JK¥vVv-M- - = (9}

of

where K is a positive {riction factor accounting for the
steady viscous drag and the pressure drop in the wakes
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at the tubes. M is a positive definite virtual mass tensor
accounting for the fact that immersion of tubes in the
liquid increases the kinetic energy of the motion with
respect to the kinetic energy without tubes (see Kelvin’s
theorem in ref. [9]).

From the discussion presented above it is clear that
the value of V x Q plays an important part, and it is
given by

Vx Q= —%Km[yca—-‘;v x V Inf¥|

S ((mR N ainR
Y £ ar

i) ov
+ o Vx (M 6t>'
It has been assumed, in agreement with experimental
data for turbulent flow in tube banks, that K = R/|v|'/,
where R = R(r,¥) is a function of r and of the direction
of the flow velocity only (i.e. v+ (R/d¥) = 0) [10].

To simplify equation (10), a steady-state situation
will be considered, ie. dv/0t = 0. Furthermore, a
homogeneous force distribution will be considered, ie.
OR/ér = VR = 0. Under these assumptions, equation
{10) simplifies to

(10)

1
—VxQ= —%Klil[c&—»%(e'(f))e
Y

_ __0lnR 4 _
—+-Tsz(v-w)----§v —ﬂex(e-D)

5 diIn R _
— ¥V X Dl
7y ( o ﬂ (11)

In equation (11} e = ¥/[§}. Use has been made of the
vector relation

7V = ViHP 4y x ¥
and of the Gibbs decomposition theorem for Vv
a-Vv=a-D+({yd x a)/2,

with a=e and a =3 In R/dv, respectively. It is
important to note here that the deformation tensor,
D = (V¥+#¥V)/2, at a point depends only on the
irrotational part of the local velocity field and not
directly on the local value of the vorticity, y@ (ref. [11],
Ch. 34). Consequently, equation (11) represents a
splitting of V x Q into parts depending either on only
irrotational or on only rotational modes of fluid
motion.

When a 2-dim. flow or an axially symmetric flow
without circulation around the axis of symmetry is
considered, v:@ =0 holds. In addition, @D in
equation (8) is equal to zero when a 2-dim. flow is
considered and the term (Dd/Dt) -+ Dinequation (8)
isequal to r(D/Dt)(w/r) when an axially symmetric flow
without circulation around the axis of symmetry is
considered. Under these conditions combination of
equations (8) and (11) result in

415

D

® . 4 =
r"i)—t—(;;;) = —%K!vi[m—ﬂe x (e-D)

5 _ 61nR_
—va( pe ﬁ)] (12)

where n =0 for 2-dim. flow and n =1 for axially
symmetric flow without circulation around the axis of
symmetry.

At the inflow boundary, @ = 0, and moving with a
piece of fluid alongits streamline, it is observed from the
relaxation character of equation (12) that yo tends from

zero to an asymptotic value of
R _
-D)]ﬁ = yb

in a characteristic time interval Ar >~ (2 x 10)/(7K|¥]).
During that time interval, the piece of fluid under
consideration has travelled a characteristic distance
AL ~ [¥|At = 20/(7K).

Atadistance of order of magnitude L from the inflow
boundary, where L is the distance between inner and
outer shell, the flow becomes parallel to the shells. Ina
parallel flow region is

_ a1
y@:[%x(e-D)+5‘7x< n_
v

R _ _
?x(a? -D>=0, ex {e' D)= —y@/2

and
yo = (0,0, —dv/or).

Substitution of these values in equation (12) shows that
in a parallel flow region where dy/dr = 0 or dy/8z = 0
the flow is irrotational. An order of magnitude
estimation results in

le x (e-D)| = 4D:D)'"?

¥ x (6 III_R-E)IZ
av

near the inflow boundary. At a distance L from this
boundary these terms are equal to zero, and at a
distance L/2 these terms have half the value at the inflow
opening. Here R| and R are thefriction factorsfor flow
normal and parallel to the tubes, respectively.

In summary, in a region near the inflow boundary, @
tends from zero at the inflow opening, via a maximum
value at a distance of approximately L/2 from theinflow
boundary to zero at a distance L.

At the location of maximum |@), |b| has half the value
of its maximum at the inflow opening and, due to the
relaxation character of equation (12), the maximum
value of |@] is equal to Y{L/AL)|b], or

71@lmax Z 36KLGED : D)2

and

4D: Dy,

R,
In—
Ry

X (42+52 1nﬁ2>”2 if KL <80/7,

V@l ar Z 33D D)2

2N\ 172
x 42+52ln—) if KL> 80/7
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where the contributions of the two terms have been
summed in a RMS sense. In the following discussion, it
is accepted that this represents an acceptable
approximation for a general 3-dim. flow also.

It follows from a Taylor series expansion and from
the Gibbsian decomposition of V¥ that the velocity ata
point r+h can be expressed as

¥r+h) = ¥ +h-Vi+-0OhD
=¥r)+hD+iyd x h-+ 0%,

From this expression, it can be observed that the
kinematical effect of wvorticity with respect to
irrotational modes of motion can be characterized by
the ratio |yw x hl/{2h- D), or, since a characterization
independent of h is preferable, by the ratio

- el
< T 24D:D) "

where W is the so-called kinematical vorticity number
(ref. [ 117, Ch. 56). Finally, it follows from this discussion
that, at the place where |@] has its maximum value, Wy
has the following order of magnitude:

2\ 172
) if
2,>1 2

For a tube bank with values of K = K| = K = 40
m ™} and L = 0.25m, a value of Wy = 25%; is found in
the flow field at the place where maximum vorticity
occurs. Also, if K, =32m 'and K, =8m™, orif
K, =20m 'and Ky =04 m" ', with a mean value
for K of (K| + K, )/2, a value of W = 25% is found
for L = 0.25. Especially the latter two examples are
representative for tube banks in actual heatexchangers.
This means that, for practical purposes, the flow may be
considered as irrotational, especially since the above-
estimated contribution of vorticity to the complete flow
field only applies in the relatively small region where
vorticity has its maximum value,

For the purpose of reference, note that both for
generalized Poiseuille flow and for boundary layer flow
along a flat, infinitely extended wall, Wi = 1, whereas
for rigid rotation, Wy = .

The conclusion is that for steady forced convection,
where natural convection is negligible, the shell-side
mean flow pattern in a tube bank may be described by
the following simple linear equations:

P Kl
]n*jf

Wy 2 0,025KL(1 +1.56 KL < 114,

-
1

We € 0.286(1 + 1.56(In - if KL>114.

1

V- (3%) = 0, (5)
Vxv=0, (13)

Since equation (13) can identically be satisfied by
v = V¢, equation (5} is equivalent to the Laplace
equation, V-{(yV@) = 0, for the velocity potential, ¢.
The advantage of this latter equation is that it can
simply be solved numerically with the aid of finite
element packages commercially available for appli-

Wout Zur and Han De BrunN

cations in structural mechanics [22]. However, in this
paper the potential formulation will not be used.

A more accurate calculation to account for the small
amount of vorticity in the flow field would not be
helpful since it would depend both on the prescribed
velocity and vorticity at the inflow-boundary, and on
experimentally determined values of K@) The
accuracy of these values, in combination with the fluid -
tube continuum approximation, is certainly not so
good to justify an accuracy better than 20-30%, in the
calculation of the mean flow velocity field. This
conclusion does not hold if baffles are present in the
flow field since, in that case, vorticity detaching at the
separation line is transported into the flow field by
means of convection. Consequently. in that case, a non-
zero value for the vorticity must be prescribed as an
inflow boundary condition at the line of separation.

2.3. The temperature fields
The equation for the steady mean temperature at the
shell-side, T, is given by

2o Vo VT = — H(T 1)) {14)

and, for straight tubes parallel to the z-axis, the
equation for the steady temperature at the tube side, 7,
is

]

0

[0

pep o = H(T—0). (15)
Inequation(15),7’ is the volume fraction of liquid in the
tubes. The value of His given by 4h,,./D, where b, is the
local heat transfer coefficient, and D is the inner
diameter of the tube (ref. [127 Ch. 13.1; ref. [10], Ch.
3.10)

If unsteady heat transfer is considered, the equations
describing heat storage in the tube wall must be
considered in addition. However, for the steady heat
transport under consideration, all heat coming from the
shell-side is transported to the tube-side without
accumulation of heat in the tube walls.

The boundary condition for the convection equation
(14) is that T must be prescribed at the inflow opening
only; this is similar to the case discussed earlier for the
vorticity convection equation (8). Also, for equation
(15}, § must be prescribed at z = 0. It should be
remarked, however, that, in contrast to the momentum
equation {6}, it does make sense from a physical point of
view to include turbulent heat diffusion terms, ie. a
term AV2T in equation (14} and a term A8%0/32% in
equation (15). For example, if only thermally insulating
tubes are present, heat transfer takes place by turbulent
diffusion only, and not by heat transport from shell-side
to tube-side liquid. If these diffusion terms are present,
either T, or 0T/dn or a combination of both must be
prescribed at a boundary completely enclosing the
temperature field ; also, in that case, either 0, or 60/0z or
a combination of both must be prescribed at z = O and
at the end of the tubes. In the present study, however,
diffusion terms are assumed to be sufficiently small with
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respect to the terms representing heat transport from
shell-side to tube-side liquid.

3. NUMERICAL APPROXIMATION

In this section, a method by which any set of first-
order partial differential equations in two variables can
beeasily discretized will be applied. This so-called Least
Squares Finite Element Method (LSFEM) has already
been reported [13, 14], and only a brief summary of the
basic philosophy and principles will be presented here.

In contrast to the global interpolation methods [15],
LSFEM s a local interpolation method, i.e. the domain
of interest is divided into a great number of sub-
domains, or finite elements. In these elements, functions
are approximated by polynomial expansions inter-
polating the function values at the interpolation points,
or nodes of the element. As an example, take the four-
node element in two space dimensions with nodes
J,j=1,...,4, defined by (Fig. 2)

M=(-3-2); @=(+%-3),
B)=(=%+2; @=(+3+2).

To this element, or so-called computational molecule,
belongs a 4-dim. vector space spanned by a set of four
independent polynomials :

1= (1,7,nd)

In this vector space, an interpolation, ¢, is defined by

(16)

¢ =a,+an+aé+ané
or (17
¢ = la;

where the well-known summation convention is
employed. Substitution of the co-ordinates of the four
nodes (16) into the interpolation (17) results in a set of
four linear equations

a; = ¢;;

or (18)
¢ = Nj¢j’

where N; = lic;; are the shape functions of the finite

element. The matrix (¢~ 1),; = I(n;, ;) is non-singular.
Differentiation of the interpolation, ¢, with respect to &

F1G. 2. Four-node computational molecule. O Nodal points
= interpolation points. * integration points = projection
points.

HMT 26:3 - G
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results in

d¢ 0N, )
P
Again, the functions 0N /0 can be expressed as linear
combinations of the shape functions

oN; _ = N,DDH;

0¢
By substitution of the co-ordinates of the four nodes
(16), and by making use of N(nodej) = §,, the matrix
of coefficients, DDK;;, is found to be

ifs

—a]%(node i).
A similar matrix, DDH,;, is obtained for the differential
operator d/0n. The matrices DDH,; and DDK;; are the
so-called “differentiation matrlces [16, 17] or
“derivation matrices” [18].

The four-node molecule (16) is used as a parent-
element for a general quadrilateral derived from it by
isoparametric mapping [19]

DDK,; = (19)

x=Nx, y=Ny.

Matrix-equivalents, DDX,; and DDY;;, corresponding
to differentiations, d/0x and 0/0y, in the (x, y) plane can
be found from equation (19) in the following way :

I% dy
DDX,; = (az DDH, == DDK,-,-)/J,
(209)
poY, = (- Z oo, + X pok,
ij — 85 ij 671 ij /
where J is the Jacobian determinant given by
_ox 6_y 0x 0y
Toe ocon

The functions d(x, y)/d(n, £) and J are linear in 5, &, and
they can conveniently be evaluated at the element
midpoint. In addition, a matrix representation for
operators containing functions is needed. If it is
required that a product-function, /- ¢, lies within the
element vector space, then it is obvious that

[ & =N ¢) @n

As a consequence, the elementary function matrices are
diagonal, the non-zero elements being the values of the
function at the element nodes [13, 14]. When the value
of ¢ = N;¢; is evaluated at a certain point, p, in the
element this is called a projection. Any universal least
squares finite element has as many projection points, or
integration points, as it has nodes, or interpolation
points (Fig. 2). The evaluation of the interpolation
polynomials at the projection points is summarized in a
matrix, P, the so-called projection-matrix

P,; = N{point i). 22)

The universal matrices DDX,,, DDY.; and P;; are

ijs ij
worked out explicitly for a general quadn]ateral with
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four integration points, and they are coded in a
FORTRAN routine with the name QUAD4. Using
these universal matrices from QUADA4, it is very simple
to construct approximations for the equations, e.g. for
the system of equations (5) and (13)H15). All these
approximations are characterized by a relationship of
the form

7= NiAij(bj (23)

where r is the residual of the equations to be minimized,
N, the appropriate set of shape functions defined by
equation (18), ¢;the vector of unknowns, and A4;;the so-
called ‘approximation matrix’ of the governing
equations.

The approximation matrix, A;;, contains all the
information of the problem discretized for the element
under consideration. To apply the matrix method
conveniently, the equations must be presented in a
somewhat different form. As an example, for an axially
symmetric flow field without circulation around the
axis of symmetry, equations (5) and (13) with constant
can be written as

v o) /ii\ 0 (5)
(13)

where x and y represent the co-ordinates in radial and
axial direction respectively, i.e. x = r and y = z. The
approximation matrix, A;;, can be constructed now,
resulting in

3 (DDX(I,J)*X(J)

X(H*DD Y(I,J))
—~DDY(l,J)

DDX(L,J)

7

withno summation over equal indices. In a similar way,
equations (14) and (15) for the mean temperature fields,
and equations (6} and (9) for the mean pressure field can
be transformed into approximation matrices.

The residual, r, of the approximating equations
specified for a finite element like equations (11),is given
by equation (23). To minimize this residual, its values at
certain points in the element, the so-called integration
points or projection points, p,{Fig. 2) will be considered,

Ip = Nf(I’)Aij‘/’,r

Application of the least squares minimum principle
demands that the sum of the squares of the residuals of
the differential equations at the integration points is
minimized. Using the element of Fig. 2, the
approximation, ¢, is continuous at the boundaries of
the finite elements. However, using the above-
mentioned summation of the squares of the residuals,
derivatives are not continuous in the complete domain
of interest. As a consequence, restriction is made to first
order equations, for which the existence of piecewise
continuous first derivatives (and continuity of the
function itsell) is sufficient to obtain an approximate
solution which has, of course, continuous first
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derivatives [20]. Explicitly written.

JJ Y(PDEY dV =3 Y w,r’ = minimum {24]

Q E p

where Qs the integration domain, £ the element index,

and w, the weighting factor belonging to the

integration point, p, of the finite element molecule, .
The minimum is found by differentiation of equation

(24) with respect to the unknowns ¢,

ZZ WuN D) A N (P A5 == O (25
L p
Calculation is performed step by step
’45 = Ns(p)A.\k:
E;= ¥ w,ArAY. 126}
P

E,; is the so-called element matrix of the problem. The
algorithm (26) can be coded. The corresponding
subroutine is called LSFEM (Least Squares Finite
Element Method). The least squares procedure of
equation (25) is completed by adding the element
matrices, E;;, to the global matrix, §,;, in the usual finite-
clement way

SUZZI'J”. {27)
E

To this global matrix, boundary conditions are added

at the appropriate places.

Finally, the choice of the integration points will be
mentioned without going into the details of the
justification for this choice. For a subdivision in N
elements, four integration points are chosen at
distances of approximately A/N from the centre of the
element, where his the size of the element (Fig, 2). In this
way, the element has an accuracy of O(h?), and the
matrix, S;;, will not be singular.

4. RESULTS AND CONCLUSION

The conclusion of Section 2.2, that the mean flow
pattern may be considered as irrotational, will be
illustrated with a numerical experiment. For a
cylindrically symmetricsteady flow without circulation
around the axis of symmetry and with uniform inflow
and outflow profiles, the streamlines have been
calculated. For that purpose, equations (5) and (9) have
been transformed to the representation by an
approximation matrix (Section 3), and they are solved
by the least squares finite element package described in
Section 3. Also, the original equations (5) and (12) were
solved with theinflow boundary condition® = 0.Since
this latter system is non-linear, a generalized Newton
iteration procedure was used (ref. [20], Ch. 5.3). For
both cases, the results are shown in Figs. 3 and 4. The
geometrical data of the tube bank used in this example
are presented in Table 1.

Further process data are: shell-side mass flow rate
360 kg s !, tube-side mass flow rate 256 kg s ', shell-
side inflow temperature 490°C, and tube-side inflow
temperature 349°C.
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Table 1

Inner shell diameter 0.460 m
Quter shell diameter 0.960 m
Length of tube bank 7.154 m
Height of inflow and outflow openings 0.370 m
Outer tube diameter 0.0210 m
Inner tube diameter 0.0182 m
Pitch (triangular) 0.0270 m
Number of tubes 846

From the numerical results, it turned out that the
approximation of the flow field by irrotational flow

- . . . L
theory compares with a calculation with the original

equations to within a maximum local error of 105, near
the edge of the inflow boundary and the outer shell. Asa
consequence of these two different flow models, the
maximum difference in temperature for the two
calculations is 7°C, or 5%. This local difference is
situated at the connection between lower tube sheet and
central tube.

In the following discussion, numerical results will be
compared with experimental data. These data have
been obtained from a test model of a tube bank with the
dimensions described in Table 1. Calculated and
measured axial shell-side temperature profiles are
shown in Fig. 5, and calculated and measured shell-side
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F1G. 3. Shell-side streamlines in inflow region. In calculation
with the original equations R, = 34[m~%*° s~ /5] and
R; = 1.3[m~*? s~ /%], Differences between calculation with
the original equations and calculation with irrotational
flow theory are too small to be visible in the figures.
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F1G. 4. Shell-side isotherms in inflow region; see also Fig. 3.
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Fig. 5.

and tube-side temperatures at the outflow boundaries
are shown in Fig. 6.

To account for boundary effects, the shell-side
porosity at the outer shell has been increased by a factor
of 1.25 over a radial distance of 0.027 m, i.e. in the tube
bank, y = 0.7257 and near the outer shell, 7 = 0.9071.
Further input data are presented in Table 2.

Table 2

Fig.

5&6 7 8

Sheil-side mass flow rate (kg s~ '} 281 80 129

Tube-side mass flow rate (kgs™ ') 267 1t R94

Shell-side inflow temperature {*C) 461 463 455
391

Tube-side inflow temperature (°C)

344

460 - -
]
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In Fig. 7 it can be observed that, for low values of the
shell-side mass flow rate, the description without
natural convection is less satisfactory than these for
higher mass flow rates. In Fig. 8, rather large
temperature differences in the tangential direction
account for the scatter in the experimental data. This
example shows the limits of a description with axiai
symmetry and without circulation around the central
tube.

Our final conclusion is that the fluid-tube
continuum model presented in this paper is a useful and
accurate tool for the prediction of the thermal-
hydraulic behaviour of shell-and-tube heatexchangers.
Il only forced convection is considered, the mean flow
pattern may be considered to be irrotational, and
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Fic. 7. Calculated and measured shell-side and tube-side outflow temperatures at low shell-side mass flow
rates.
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F1G. 8. Calculated and measured shell-side and tube-side outflow temperatures at low tube-side mass flow
rates.

consequently only a simple linear system of equations
must be solved.
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APPENDIX

DERIVATION OF THE FLUID-TUBE
CONTINUUM EQUATIONS

The momentum equation

It has already been pointed out that the flow around the
tubes is described by the continuity equation (1) and the
Navier—Stokes equations (2). Hence, these equations should
form the starting point of the derivation of the fluid—tube
continuum approximation. Taking the scalar product of
equation (2) with v, and integrating over a piece of fluid, Q*(z),
with closed boundary, 8Q*(t), moving with the fluid, results in
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(ref. [12], Ch. 3.3)
—H (p—pg-r)v-n)dS*
20 (t)

=5 JJJ‘ (vv) dV*fn“f Zy dV*. (Al)
de ) ot

The last term of equation (A1) can be split into two parts,

[2ats] X0

x(D:D)dV*A2r1JJ (v-D)y-ndS*=¢,+J, (A2)
o)

where D = (Vv+vV)/2 is the deformation tensor. The first
term on the RHS of equation (A2), ¢,, represents the viscous
dissipation in the volume Q*(¢), and the second term, J,,
represents the rate of viscous energy transport from one piece
of fluid to another.

The kinetic energy, Ty, of the fluid volume Q*(t) is given by

T, = QJJ.J (vev)dV=.
Q*t)

Since on the rigid tube boundaries the no-slip condition,v = 0,
holds, the surface integrals in equations (A1) and (A2) have no
contribution from these boundaries ; only the boundaries with
adjacent fluid volumes contribute. This fact makes it possible
to consider another volume, Q, with boundary 0Q, not only
containing liquid, but also containing tubes. To introduce
such a ‘fluid—tube mixture’, the fluid—tube domain under
consideration is divided into subdomains, Q. These
subdomains are sufficiently large to enclose at least one cross-
section of a tube. Of course, this partitioning can be donein an
infinity of ways, and in Fig. 9 only two possibilities are shown.

It can be proved that the ratio of the two volumes, Q*/Q, is
equal to the mean ratio of the two surface areas, 0Q*/0Q,
provided that the parts of dQ* at the tube walls are not
accounted for. For the part of the surface normal to the z-axis
this is immediately clear, and in the example of Fig. 9 this ratio
isequalto 1 —nd?/4ab. For the part of the surface normal to the
x-axis, the surface area not in contact with the tubes is equal to

(A3)
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An elementary calculation shows that the mean value.
dQ*, over an interval of the x-axis with length a, is equal
to (b —nd*/4a)Az, and this means that the mean value of the
ratio of the two surfaces, 3Q* and Q, is equal to 0Q*/#Q) =
1 —nd?/4ab. A similar conclusion holds for the mean surface
area not in contact with the tubes, normal to the y-axis. As a
consequence, it 1s possible to define infinitesimal volumes, d ',
and mean infinitesimal surface areas, dS, in such a way that
dV/dV* = dS/dS* = 1/, where y is the so-called porosity. or
mean permeability, defined by 7 = Q*/Q == 20*/6Q. In this
way, a dilatation of the co-ordinate system 1s introduced such
that the volumes, {ff,, dV, respectively surface areas, {{,, dS.
are equal to the volumes, respectively surface areas of the
‘fluid-tube mixture’. The value of the surface integral in
equation (A1) depends on the choice of the boundary, #Q*:
different values will be obtained for the configurations of Figs.
9(a) and (b), respectively. From a statistical point of view. it 1s
natural to use the mean value, 3Q*, for the part of 6Q* not in
contact with the tubes and, since the part of the surface in
contact with the tubes does not contribute to the surface
integral, equation (A1) is written as

. . d1,
)] e ds =
Y €1y

S S (A4
di

The force, F. applied to the moving fluid- tube element 1s given
by

F= ,Jf (p—pg-r)ny dS
o U

= —)'JJJ Vip—pg-r)dV. (A5
Q)

In equation (AS) use has been made of Gauss’s divergence
theorem to transform the surface integral into a volume
integral in the delated co-ordinate system. Now a mean
velocity, q, will be defined in such a way that

JJ (p—pg-riv-n)y dS

and equation (A4) can be written as

.o

"l'jJ(P*ﬂg'l‘)ﬂ"/ ds =

bAz in the configuration of Fig. 9(a), and it is equal to (b — d)Az Frg= % b4 (A6)
in the configuration of Fig. 9(b). dr
Z
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Equation (A6)represents an expression for the component of F
in the direction of §. If it is possible to express T, ¢, and J, in g,
the component of F in the direction of § can be determined
from equation (A6). Furthermore, if for the components of F
normal to § an additional expression can be obtained, F(q) is
known completely. In that case equation (AS) may be
considered as the equation of motion in the fluid-tube
continuum.

To find the required expressions, the kinetic energy of the
moving volume will be related to the mean velocity, q, and toa
co-ordinate of the moving volume q, defined by

= ~{"i(t) dt

T, = Ti(q, §).

If 7, has a quadratic form, T, = $m,(q)4.4;, wherem;; = m;isa
positive definite tensor, and if, in addition, the system were
Lagrangian, we would find for F = F,, i = 1,2,3,

ie.

dmy;
Ti},-i Gl A7
From equation (A7) it is observed that, for steady rectilinear
flow, the force F depends quadratically on the velocities §.
From equations (A6) and (A7)itis found that for such a system
¢, +J, =0. Also, since m;; does not depend on the flow
direction, dm;;/dg, = 0 for symmetry reasons and F =m-§,
i.e. there is no force required to maintain a steady flow. This
case just describes irrotational flow, which is Lagrangian with
a positive definite so-called virtual mass tensor (ref. [9], arts.
135 and 136), where Vv = 0 (ie. ¢, +J, = 0), and where a
steady flow has no resistance, provided that some symmetry
conditions are satisfied (d’Alembert’s paradox, [21]).

For general, not necessarily irrotational, flow, the following
expression can be derived from equation (A6):

(7T e LT
AC RGP

_ax@x® @+

qz q',Z
The flow in a tube bank is far from irrotational. In general, it
will be fully turbulent. From steady-state experiments it is

known that, in that case, the force has the direction of the
velocity, q, and that the form drag,

3Tk L\,
6q “q/9,
plus the viscous drag, (¢Y+Jv)q, can be written togetherin a

quadratic form, rather similar to equation (A7) for steady
irrotational flow,

Fo 1 (0T,

C*\ g
In equation (A8a), k depends slightly on the magnitude of §,
and k also depends on the direction of 4. The form drag is
almost zero for flow parallel to the tubes, and the viscous drag
is almost negligible with respect to the form drag for flow

normal to the tubes.
Since no experimental data are available for the

acceleration term,
aTk LY,
% *q g,

the expression m - § from irrotational flow theory will be taken
when unsteady flow is considered, thus assuming that an
unsteady irrotational flow is superposed to the (non-
irrotational) steady flow. In this way the following expression

. dmy
Fi=myg;+ E}:Q&‘I}_z

(A3)

q)q+ @+ el T e ase
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results:
F = m-§+klqla. (A9)

The values m and k are porportional to the fluid volume, yQ(2),
under consideration. Consequently, equation (A9) may be
written as

F—=—3m Vip—pg-ndV
P P 1)
=(M'ii+%Klfllfl)v‘”'f dv  (A10)
Qn

wer(off )
corlof][ )

For N adjacent fluid elements i, i=1...
expression, from equation {A10), holds:

1 N
-—¥ JJ. Vip—pg-r)dV
Pi=1 @&

where
and

N, the following

"MZ

Since the volume elements Q; have arbitrary size (but are large
enough to contain at least one tube), it is an acceptable
approximation to assume continuous functions § = §(r),
q = q(r), M = M(r), K = K(r) instead of the discrete values
4; 9, M; and K. Equation (A11) then becomes

j” —Vip—pg-ndvV = Jl” M-g+iKlgipdy (A1)

where €2 is any sufficiently large volume. For mathematical
convenience, however, the requirement of a minimum volume
to make sense for the equation will be dropped, and when
replacing § by ¥ and § by Dv/Dt, the following equation is
finally found :

D¥ .
M'l +%KI?{?+V(£— ng-):() (Al2a)
Dt o

where j represents a mean pressure over a sufficiently large
volume,

The continuity equation

In a similar way, the continuity equation for another mean
velocity, {v>, can be derived from equation (1} as follows:
equation (1) is equivalent to

IRSEES NG

The surface integral in equation {A13) has no contribution
from the rigid tube boundaries, where v = 0, and, as with the
derivation of equation {A4), it is possible to write equation

(A13) as
JJ (vom)y dS = 0.

Now a mean velocity, (v, is defined such that

(v)-JJ yn dS = j (v my dS =0.
o0 Els)

For N adjacent fluid elements i, i ==1..

ndS*=0.  (A13)

.N, the following
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expression holds for the (v);:

.\ r
Y v J ndS =0
= JJe,

and again, the discrete values, {v), may be replaced by
continuous values, {v)(r), resulting in

Ve[rv] =0,

(Al4)

In this latter expression it is also assumed that y = y(r), thus
automatically accounting for regions with different mean
porosities. Obviously, {v) represents the volumetric flow rate
per unit surface area of the wetted surface (and not of the total
‘fluid—tube mixture’ surface). Since also v represents a mean
velocity related to the wetted surface, it is an acceptable
approximation toidentify the two mean velocities,ie. (vD> = ¥,
and

V(¥ = 0. (A15)
T'he temperature equation

The derivation of the shell-side equation for the mean
temperatures, T, follows almost immediately and will not be
considered here in further detail.

The resistance force
Finally, a slight modification of equation (A12) will be
proposed: equation (A12) can be written in the form of

Wout Zur and HaN De Brunx

equation (6) with a force distribution, Q, given by

L Dy
Q= —iKW—(M—1)- (A16)
D1

where I is the unit tensor, and

Dy
= - Gy \,",
Dr

For irrotational flow parallel to the tubes M = I, and for
irrotational flow normal to the tubes, M — MI, with M > 1.
since immersion of obstacles in the liquid increases the kinetic
energy of the motion with respect to the kineticenergy without
these obstacles (see Kelvin’s theorem [ 97]). However, the flow is
far fromirrotational and, therefore. Kelvin’s theorem does not
hold. Hence, as an approximation. it will be assumed that for
steady flow the term (M — 1)+ (v- V¥) is already included in the
term % K|¥|v. Consequently. Q will be given by

Q- AKFyMon- iA17)
Ot

For unsteady flow, the value of M will be obtained from
irrotational flow theory, and in a forthcoming paper, an
explicit expression for M will be presented. In this paper
restriction will be made steady flows, i.e ¥/ ¢t = (.

EQUATIONS DU MILIEU CONTINU POUR LA DESCRIPTION DU COMPORTEMENT
THERMOHYDRAULIQUE DES ECHANGEURS DE CHALEUR

Résumé - On a étudié le soi disant modéle du “milieu continu tube-fluide™ pour la description du

comportement thermohydraulique des échangeurs de chaleur, avec une attention spéciale pour la bonne

formulation des conditions aux limites. On donne aussi la dérivation des équations a partir des principes de

base. Arrivé a un systéme linéaire d’équations partielles différentielies : 'équation de Laplace et deux équations

linéaires de convection, une solution numérique est trouvée avec la méthode des éléments finis basée sur la

principe des moindres carrés. Finalement, les résultats numériques sont comparés avec les données obtenues
des expériments. 1l y a une ressemblance satisfaisante.

KONTINUUMGLEICHUNGEN ZUR BESCHREIBUNG DER THERMOHYDRAULISCHEN
FAHIGKEIT VON WARMETAUSCHERN

Zusammenfassung - -Der sogenannte Flissigkeitsrohre Kontinuumansatz, um die thermohydraulische
Fihigkeit von Wirmetauschern beschreiben zu konnen, wird kritisch betrachtet. Insbesondere ist die
korrekte Formulierung der Randbedingungen beachtet worden und ist auch eine Herleitung der Gleichungen,
ausgehend von der Grundprinzipien, presentiert worden. Das resultierende System gekuppelter particller
Differentialgleichungen : eine Laplacesche Gleichung and zwei lineare konvektive Gleichungen, ist numerisch
gelést worden mit einer finiten Elementenverfahren, basierend auf einem kleinsten Quadraten
Minimumprinzip. Schliesslich sind die numerischen Resultate mit den experimentellen Daten verglichen
worden. Die Ubereinstimmung ist gul.

UCHO/b30BAHUE YPABHEHUM CIIJIOUWIHOW CPELbI /1A PACHYETA OBTEKAHUA
KOXVXA U MPOPUIIEA TEMIIEPATYP B TEIJIOOBMEHHUKAX

AnsoTauus — JIaH KpHTHYECKMI 00630p TaK HAa3bIBAEMOrO METO/a CIUIOHIHOW Cpelbl, HCNOJIbiyeMOoro
015 ONUCaHMS TEPMOTHAPABIMYECKOrO pexuMa paborel Temnoobmennuxos. Ocoboe BHAMaHHe
YIEICHO KOPPeKTHOH (OPMYIHpOBKE IpaHM4HbIX YcioBuidl. [aH BBHIBOA OCHOBHBIX YPaBHCHHH.
[lonyyeHHas B pe3yJibTate JuHeliHas cuctema AuQQPEPEHUMATLHBIX YPABHCHHH B YAaCTHBIX NPOU3BOJ-

HbIX

YpaBHCHHUE Jlannaca u jaBa JIMHEHHBIX YPABHEHHS! KOHBCKIIMHM - DEIIEHA YHCIJICHHO METOA0M

KOHEYHBIX JJIEMEHTOB, OCHOBAHHOM Ha IMPUHUHMNE MHHUMYyMa HAaWUMECHBIUUX KBAOpaTOB. M uakownen.
[[POBEICHO CPABHECHHUE YHCIICHHBIX pe3yJbTaTOB C 3KCMECPUMEHTAIILHBIMH NaHHBIMH N NOJY4CHO HX
XOpoluee COBMAACHHC.



