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Abstract--The so-called fluid-t&e continuum approach to describe the thermal-hydrsuiic performance of 
heat exchangers is critically reviewed. Special attention is given to tile correct formtietion of the boundary 
conditions, and a derivation of the equations starting from basic principles is presented. The resulting lirrear 
system oi partial differential equations, a Laplace quation and two linear convection equations, is solved 
numerically by a finite element approximationmethod based on the least syuares minimum principle. Finally, 

the numerical results are compared with experImenta data. ‘Ihe agreement IS good. 

A,, approaimation matrix; 
c P’ specific heat at constant pressure 

[.I kg-’ K-‘1; 
D, deformation tensor [s- 1 J ; 
DDX, 13Dx,2 dikrentialion matrices Cm ‘1; 

element matrix; 
force applied on Fluid element [N] ; 
gravitational acceleration [m s-‘1 ; 
scale factors in orthogonal curvilinear co- 
ordinate system; 
local heat transfer coefficient [W m-’ K-r]; 
vofumek~c heat transfer coefficient 
[W m -3 K--‘I; 
viscous energy transport term [W] ; 
kinetic and viscous energy loss factor [Pa s’] ; 
energy loss factor per unit mass, friction factor 
per unit length rrn-‘l; 
virtual mass tensor [kg]; 

virtual mass tensor per unit mass ; 
unit vecror normal to boundary; 
shape functions ; 
pressure [Pa] ; 
position vector of moving fluid element [MI] ; 

continuously distributed force term per unit 
mass rm s 2] ; 
residual ; 
radial coordinate [m] ; 
position vector [m] ; 
#qq”S rrn-w s-‘/5]; 

continuousiy dlstrlbuted heat soar~e term per: 

unit volume [W mmJ]; 
system matrix ; 
time [s] ; 
shell-side temperature [K] ; 
kinetic energy of fluid element [J]; 
shell-side radial velocity [m s - 1 ] ; 
shell-side aninf v&city [m c;- I]; 
shell side vebcitg [m s-l]; 

~I_- 
t present address: Ground-Water Survey TNO, PO Box 

285. 2600 AG Delft, The Netherfands. 

W, tube-side velodtp [m s- ‘1; 

Wi, kinematical vorticity number; 

,“, axial co-ordinate [ml. 

Greek symbols 
shell-side porosity ; 
tube-side purosity; 
dynamic viscosity [Pa s] ; 
local co-ordinate (radial) ; 
tube-side temperature [KJ; 
thermal conductivity [W m ’ K ‘1; 
local co-ordinate (axial); 
co-ordinates in orthogonal cuw%near system 

Cm> ; 
density [kg mp3] ; 
approximation: 
viscous dissipation term [W] ; 
vorticity divided by porosity rs I]. 

Superscripts 
* mean value; 

* , liquid volume, in contrast to liquid-tube 
volume; 

*> motional time derivative; 

P% inlegration point index. 

Subscripts 

P> integration point index. 

Del operators in Cartesian co-ordinates 

(V#, = (grad 4); = g, gradient; 
i 

V * A = div A = 2, divergence (1); 
1 

(V x A)i = (curl A)i = ~~~~2~ curl (2); 
, 

(VA), = 2, gradient tensor; 
I 

(AY), = ii!, transposed gradient tensor; 
I 
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34 
v’V# = Vjzv 

J convective time 

?A, ’ derivatives ; 

(V . VA)i = “j air’ 
I I 

local time derivatives ; 

motional time derivative ; 

(V’A), = [V(V- A)-V x (V x A)], t Laplacians: 

? ldA;\ I 

VA = +(VA + AV) 

i 

0 W x Ah -(V x A)2 s 

++ -(V x Aj, 0 (V x A), . 

(V x 42 I -(VxA), 0 

Gibbsian decomposition ; 

(I) two repeated indices denote summation over 

these indices ; 

0 if i=j or i = k or ,j = k. 

+ 1 if (,i,j, k) = (1,2,3) 

(2) Eijk = 

I 

or (2,3,1) or (3,1,2), 

- 1 if (i,j, k) = (2, I, 3) 

or (1,X2) or (3,2,1), 

Levi-Civita tensor : 

1. INTRODUCTION 

ESPECIALLY when heat exchangers and steam 

generators for Liquid Metal cooled Fast Breeder 
Reactors (LMFBR) are considered, a high integrity is 
required and, to avoid unacceptable thermal stresses. a 
thorough knowledge of the 3-dim. temperature 
distribution is necessary for both design and licensing 
purposes. 

In Fig. 1, an example of a straight-tube shell-and- 
tube heat exchanger is presented. The flow distribution 
on the shell side of a shell-and-tube heat exchanger or 
steam generator has a significant influence on the 
temperature distribution across the tube bundle and, 
consequently, on the thermal stresses caused by the 
temperature gradients. For that reason, this paper will 
mainly be concerned with the equations describing 
Aow. 

The equations to be solved are well established; they 
are the classical partial differential equations expres- 
sing conservation of mass, linear momentum and 

(See ref. [ 1-J for a thorough investigation of the 
mathematical properties of the Wavier ~Stc.,ke:a 
equations.) 

To obtain a wclf-posed partial difl’erential problem. 
initial and boundary conditions must by” prescribed for 
the Navier--Stokes equations. The initial condition I.< 
that v(r.0) must be prescribed af time i == 0. and J 
boundary condition at a boundary completely endos- 

ing the lluid is that the velocity. v. mtiy he prescribed 
for all times t > 0. b’or the tuhc bundle under 

consideration, this I~CXIIS that v =:~ 0 must also :*c 
prescribed at the boundaries of the rigid tubes. It th 
worthwhile to emphasize the fact that the USC of the 
above-mentioned initial and boundary conditions 
excludes the prescription of the pressure. p. as an ini ti;ii 

or boundary condition 121. 
From the energy equation and the Navier Stokca 

equations. an equation for the tcmpcrature. 7‘. can bc 

derived. 

in equation (3) D = (Vv -t- vV)~~ IS the deformation 
tensor. and the heat production by radiation has been 
neglected. (For ;I detailed denvatinn of both the 

Navier- Stokes equations and the temperature equa- 
tion see ref. [.?].I 

Although the equations and boundary condition5 
needed for the prediction of the shell-side tlow p;Lttern 
are well-established, it is, however. also a well-known 
fact that the Navier-Stokes equations are difficult to 
solve. Even for simple geumezries. analyticai and 

numerical solutions can only be obtained for relativei! 
low Reynolds numbers. Furthermore. the very simple, 
from a mathematicat point ol’ view. equation> 
describing incompressible, irrotational flow. i.e. 

V * v II [j, ii! 

v x Y = 0. iii! 

can hardly be solved if a tube bundle IS present, due [O 
the very complex geometry. The requirement tha! 
n - v = 0 at all tube walls is prohihitivr. 

Due to the reasons mentioned above. a solution <ii 
the Navier-Stokes equations is completely out of the 
question and approximations must be introduced 
Several investigators have attempted to describe thi% 
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FIG. 1. Example of straight-tube shell-and-tube heat exchanger. 

shell-side flow distribution approximately by partial 
differential equations describing a so-called fluid-tube 
continuum [4-71. In the Appendix a derivation of these 
equations will be presented. The equations describing 
motion in the fluid-tube continuum are shown to have 
essentially the same character as the well-known Euler 
equations describing inviscid fluid dynamics ; the only 
difference being a porosity factor, y, representing the 
ratio of the volume occupied by the fluid and the total 
volume, and a continuously distributed force term, Q, 
accounting for the resistance of the tubes. Also, the 
equation describing the temperature in a fluid-tube 
continuum contains a continuously distributed heat 
source term, S, accounting for the heat transport to the 
tubes. 

In the next section, the fluid-tube continuum 
equations are postulated and worked out to a suitable 
basis for numerical treatment. In Section 3, the finite 
element method, used to solve the resulting equations, 
is explained briefly. In Section 4, numerical results for 
an intermediate heat exchanger designed for a LMFBR 
plant are shown and compared with experimental data. 

Finally, in the Appendix, a derivation of the fluid- 

tube continuum equations will be presented starting 
from the fundamental conservation equations (l)(3). 

2. FLUID-TUBE CONTINUUM EQUATIONS 

AND BOUNDARY CONDITIONS 

Starting from the fundamental conservation equa- 

tions (1x3), the fluid-tube continuum equations are 
derived in the Appendix, the equations resulting being 

c4-71 

v * (yV) = 0, (5) 

and 

(7) 

In equations (5x7), V is the mean velocity, ji the mean 
pressure, and T the mean temperature. The force 
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distribution, Q, and the heat source distribution, S, are 
additional unknowns for which additional expressions, 
either coming from experimental data or from 
analytical solutions of relatively simple problems, must 
be found. In all previous analyses [4-71, only the 
steady-state expression for Q was applied, which leads 

to physically doubtful results when transient pheno- 
mena are considered. In the Appendix, a possibility of 
modifying Q in such a way that unsteady phenomena 
can be described will be proposed. 

2.1. Theflowjield 

In classical (inviscid) fluid dynamics. it is customary 
to eliminate the pressure from equation (6) by taking 
the curl of it and using equation (5), resulting in an 
expression describing the convection of vorticity 

divided by the porosity. W = (V x V)/y, 

Dw 
p=w-D+/,VxQ 
Dt 

where D = (VV +VV)/2 is the so-called deformation 
tensor. If V x Q = 0, equation (8) is exactly equivalent 
to the Helmholtz form of the Euler equations [23]. 

The physical meaning of the so-called generalized 

Helmholtz equation (8) is that the vorticity of a piece 
of fluid (divided by the porosity) changes with a rate 
ti*D+(V x Q)kc during the motion of this piece 
of fluid along its streamline. A consequence of this is 
that the vorticity must be prescribed both as an initial 
condition and as a boundary condition on the inflow 
opening. If these latter conditions represent zero vorti- 
city and if V x Q x -6, it follows from equation (8) 
that V x v = 0 in the complete how held. In this case. 
equations (5) and (4) must be solved for V, however. 
without boundary conditions on the individual tubes, 
i.e. for a relatively simple geometry. In general, the 
condition V x Q (x - ti does not hold and, as a conse- 
quence, vorticity is produced in the flow field. As a 
matter of course, this vorticity, ~0, must be solenoidal, 
i.e. V * (1~3) = 0, since only in that case can the vorticity 
be interpreted as V x V. 

From equations (5) and (8) it can be derived that ifthe 
condition V .(yW) = 0 is prescribed at the inflow 
boundary then ~‘6 is automatically solenoidal in the 

complete flow field (provided, of course, that at I = 0, 

yti(r, 0) is solenoidal). 
In the following discussion, the conditions for Q 

under which the vorticity, yW, may be taken equal to 
zero at the inflow boundary will be sought. For that 
purpose, an orthogonal curvilinear co-ordinate system 
with co-ordinates r = (CL. &, t3) will be considered. In 
this co-ordinate system, t3 is the co-ordinate in the 
direction of the normal unit vector. II, at the inflow 
boundary, and & and <z are co-ordinates parallel to 

that boundary [Xl. Under the condition that W = 0 at 
the inflow boundary, the condition V * (713) = 0 at that 
boundary can be written as 

The same condition includes. for the &.- ., cO~lpOnenT t11‘ 

equation (XL 

Since, by definition. I.? ~ n. v i (1 .ii the mtlou 
boundary. both equations can be cnmbincd to give 

Consequently. the inflow boundary iondttron w - 0 
may be applied only if n-V x Q -= 0 ai the inflow, 
boundary. In the following discussion\. this latter 
condition will always be assumed II,) hoid 

The difference between the Navier Stt)kes equations 
and the Euler equations is the absence of the second 
order term (s/~~)V*v in the Euler equations. One of the 

consequences of this absence is a simplification of the 
boundary conditions. Instead of sholi boundark 
conditions fort he three componems of Y I’OI the Nat ic! 
Stokes equations, the boundary c~~nditinn v. n -- 0 
holds for the Euler equations at the rigid solid shell. 
This latter mathematical feature mtkcs Fuler-lihe 
equations especially well-suited for the ticscrlption of‘,, 
fluid-tube continuum. in contrast to Xavier Stokes- 
like equations, as will be showt! in the lollowmg 
discussion. 

From a physical point of v~v.. rhc boundary 

conditions in a fluid- tube continuum rare that no fluid IS 
flowing out of the impermeable shell. IL. Y. n -m 0 on the 
shell. Of course. in a fluid tubl: continuum n:\ 
boundary conditions may be prescribed on the tube-. a 
mean volumetric flow rate of tluicl is passing act-ass a 
unit dre:i containing tubes. and t?ie loi:ti fluid vclocily. 
as it passes through the clearances between the tubes. 
will not be considered. Additional boundary <on- 
ditions. e.g. for the velocity components parallel tcj the 
wall, for the so-called turbulent tangenttal stress, or for 
the vorticity, may not be prescribed. Smcc in that case 
thereis no reason why the same condition is not applrcd 

at the boundaries (II the individual tubes 

Consequently, from a physical pomt of view. the 
boundary conditions in a fluid lube continuum 
approximation have an Euler-like character. 

The difference between the prcscnr study and the 
earlier treatments [4 71 IS that the Ivtter authors did 
not make use of the advantages ot the Fuler-like 
character of the equations, wherea< in this paper these 
advantages will be fully exploited. In the following part 
of this section, equation (8) will further hc simplihcd bq 
making use of an expression for Q. 

2.2. Irrotalionu/,flm 

In the Appendix it is proved that 

where K is a positive friction factor accounting for the 
steady viscous drag and the pressure drop in the wakes 
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at the tubes. M is a positive definite virtual mass tensor 
accounting for the fact that immersion of tubes in the 
liquid increases the kinetic energy of the motion with 
respect to the kinetic energy without tubes (see Kelvin’s 
theorem in ref. [9]). 

From the discussion presented above it is clear that 
the value of V x Q plays an important part, and it is 
given by 

It has been assumed, in agreement with experimental 
data for turbulent flow in tube banks, that K = R/Jv11’5, 
where R = R(r, C) is a function of r and of the direction 
of the flow velocity only (i.e. 0 * (dR/at) = 0) [IO]. 

To simplify equation (lo), a steady-state situation 
will be considered, i.e. dii,G?t = 0. Furthermore, a 
homogeneous force distribution will be considered, i.e. 
aRj& = VR = 0. Under these assumptions, equation 
(LO) simplifies to 

:V x Q = -$Kliil cii-$(e+ti)e 

aInR 4 
+&+*Lij) --- 

av -se x (emD) 

-;7 x (q+)]. (11) 

In equation (11) e = ~/I%$ Use has been made of the 
vector relation 

and of the Gibbs decomposition theorem for VV 

a-VT = a*b+(y& x a)/2, 

with a = e and a = d In R/h, respectively. It is 
important to note here that the deformation tensor, 
b = (VT+ iiV)/2, at a point depends only on the 
irrotational part of the local velocity field and not 
directly on the local value of the vorticity, yW (ref. [l 11, 
Ch. 34). Consequently, equation (I 1) represents a 
splitting of V x Q into parts depending either on only 
i~otational or on only rotational modes of fluid 
motion. 

When a 2-dim. flow or an axially symmetric flow 
without circulation around the axis of symmetry is 
considered, V -6 = 0 holds. In addition, 6j.D in 
equation (8) is equal to zero when a 2-dim. flow is 
considered and the term (DG/Dt) -(II, * Din equation (8) 
is equal to r(D/Dt)(o/r) when an axially symmetric flow 
without circulation around the axis of symmetry is 
considered. Under these conditions combination of 
equations (8) and (11) result in 

fDt F = -i$lVl w--e x (e-D) “(“) ’ [- 74, 
-;i x (+%J)] (12) 

where n = 0 for 2-dim. flow and n = 1 for axially 
symmetric flow without circulation around the axis of 
symmetry. 

At the inflow boundary, 0 = 0, and moving with a 
piece offluid along its streamline, it is observed from the 
relaxation character ofequation (12) that ycii tends from 
zero to an asymptotic value of 

in a characteristic time interval At N (2 x 10)/(7KItl). 
During that time interval, the piece of fluid under 
consideration has travelled a characteristic distance 
AL ‘v liilAL2t = 20/(7K). 

At a distance of order ofmagnitude L from the inflow 
boundary, where L is the distance between inner and 
outer shell, the flow becomes parallel to the shells. In a 
parallel flow region is 

iX(y*D)=O, ex(e-D)= -yo3/2 

and 
~0 = (0, 0, - avjar). 

Substitution of these values in equation (12) shows that 
in a parallel flow region where ay/ar = 0 or dy/az = 0 
the flow is irrotational. An order of magnitude 
estimation results in 

and 
le x (e*B))l Z (&D:@1’2 

near the inflow boundary. At a distance L from this 
boundary these terms are equal to zero, and at a 
distance L/2 these terms have halfthe value at the inflow 
opening. Here R, and R ,, are the friction factors for flow 
normal and parallel to the tubes, respectively. 

In summary, in a region near the inflow boundary, ti 
tends from zero at the inflow opening, via a maximum 
value at a distance ofapproximately L/2 from the inflow 
boundary to zero at a distance L. 

At the location ofmaximum /WI, lb] has half the value 
of its maximum at the inflow opening and, due to the 
relaxation character of equation (121, the maximum 
value of lcii/ is equal to i(L/AL)lbl, or 

x (42+52jln~12~‘2 if KL > 80/7 
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where the contributions of the two terms have been 
summed in a RMS sense. In the following discussion, it 
is accepted that this represents an acceptable 
approximation for a general 3-dim. flow also. 

It follows from a Taylor series expansion and from 
the Gibbsian decomposition ofV? that the velocity at a 
point r + h can be expressed as 

V(r + h) = a(r) + h. 55 + Ofk’) 

= vjr)+h-B+$;6 x h+U(hZ). 

From this expression, it can be observed that the 
kinematical effect of vorticity with respect to 

irrotational modes of motion can be characterized by 
the ratio (~6 x h(/12h * DI, or, since a characterization 
independent of h is preferable, by the ratio 

w, = _;‘(w/__ 
2(@: D)‘,2 

where Wk is the so-called kinematical vorticity number 
(ref. 11 I], Ch. 56). Finally, it follows from this discussion 
that, at the place where /WI has its maximum value. k&k 
has the following order of magnitude : 

For a tube bank with values of K = K, = Ki = 40 

ni- 1 and I, = 0.25 m. a value of W, 2 L’S’:,, is found in 
the flow field at the place where maximum vorticity 
occursAlso,ifK,=32m iandKii=8m-‘,orif 
K, = 20 m-’ and Kil = 0.4 mm-‘. with a mean value 
for I(: of (i<; +K ,)/2, a value of kl$ 2 25’!,, is found 

for L = 0.25. Especially the latter two examples are 
representative for tube banks in actual heat exchangers. 
This means that, for practical purposes, the flow may be 
considered as irrotational, especially since the above- 
estimated contribution ofvorticity to the complete flow 
field only applies in the relatively small region where 
vorticity has its maximum value. 

For the purpose of reference, note that both for 
generalized Poiseuille Row and for boundary layer IIow 
along a flat, infinitely extended wall, W, = 1. whereas 

for rigid rotation, WK = x.. 
The conclusion is that for steady forced convection, 

where natural convection is negligible, the shell-side 
mean Bow pattern in a tube bank may be described by 
the following simple linear equations : 

v . (yF) = 0, (5) 

v x f = 0. (13) 

Since eyuation (13) can identically be satisfied by 
ii = Vd;, equation (5) is equivalent to the Laplace 
equation, V-@V$) = 0, for the velocity potential, 6. 
The advantage of this latter equation is that it can 
simply be solved numerically with the aid of finite 
element packages commercially available for appli- 

cations in structural mechanics 1227. However, in this 
paper the potential formulation will not be used. 

A more accurate calculation to account for the small 
amount of vorticity in the flow field would not be 
helpful since it would depend both on the prescribed 
velocity and vorticity at the inflow-boundary, and on 
experimentally determined values of K(v). The 
accuracy ofthese values, in~~)mbinati(~~l with the fluid 
tube contjnuuln approxi~ti[~n, is certainly not w 
good to justify an accuracy better than 20 30”,, m the 
calculation of the mean Ilow velorit>- field. ‘IXY 
conclusion does not hold if baffles are present in the 

how held since, in that case, vorticity detaching at the 
separation line is transported into the 110~ held hi 
means ofconvection. Consequently. in that case,a nor:- 
zero value for the vorticity must bc prescribed :IS ~1 
inflow boundary condition at the line of separation 

2.3. The t~mpercltza’e,fields 

The equation for the steady mean temperature at the 
shell-side, T. is given by 

;.$‘<.,V.V;i; ZZ --;+“3$(T- 0) il4l 

and, for straight tubes parallel to the z-axis. the 

equation for the steady temperature at the tube side. ii, 
is 

In equation{ 15), ;J ’ is the volume fraction ofliquid m the 
tubes. The value of H is given by 4h,,,:‘D. where bloc is the 
local heat transfer coefficient, and D is the inner 
diameter of the tube (ref. [12] Ch. 13.1 ; ref. [lo’]. U-I. 
3. IO). 

If unsteady heat transfer is considered, the equations 
describing heat storage in the tube wall must be 
considered in addition. However, for the steady hear 
transport under consideration, all heat coming from the 
shell-side is transported to the tube-side without 
accumulation of heat in the tube walls. 

The boundary condition for the convection equation 
(14) is that ;f must be prescribed at the inflow opening 
only; this is similar to the case discussed earlier for the 
vorticity convection equation (8). Also, for equation 
(15), (7 must be prescribed at z = 0. lt should be 
remarked, however, that, in contrast to themomentun~ 
equation (6), it does make sense from a physical point of 
view to include turbulent heat diffusion terms. i.e. a 
term /zV’T in equation (14) and a term ii*tI/Z” in 
equation (15). For example, if only thermally insulating 
tubes are present, heat transfer takes place by turbulent 
diffusion only, and not by heat transport from shell-side 
to tube-side liquid. If these diffusion terms are present, 
either _i or r77’/&r or a combination of both must be 
prescribed at a boundary completely enclosing the 
temperature field ; also, in that case. either 0, or ?irj?~ or 
a combination of both must be prescribed at I? = 0 and 
at the end of the tubes. In the present study, however. 
diffusion terms are assumed to be su~ciently small with 
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respect to the terms representing heat transport from 

shell-side to tube-side liquid. 

3. NUMERICAL APPROXIMATION 

In this section, a method by which any set of first- 
order partial differential equations in two variables can 
be easily discretized will be applied. This so-called Least 
Squares Finite Element Method (LSFEM) has already 
been reported [ 13,141, and only a brief summary of the 
basic philosophy and principles will be presented here. 

In contrast to the global interpolation methods [15], 
LSFEM is a local interpolation method, i.e. the domain 
of interest is divided into a great number of sub- 
domains, or finite elements. In these elements, functions 
are approximated by polynomial expansions inter- 
polating the function values at the interpolation points, 

or nodes of the element. As an example, take the four- 
node element in two space dimensions with nodes 
j, j = 1,. . ,4, defined by (Fig. 2) 

(1) = c-i, -4); (2) = (+$, -4) 

(3) = (-f, +$)); (4) = (++, +g. 
(16) 

To this element, or so-called computational molecule, 
belongs a 4-dim. vector space spanned by a set of four 
independent polynomials : 

1 = (1, ?> 5, r15). 

In this vector space, an interpolation, 4, is defined by 

4=a1+aZr+a,5+a& 

or 

4 = l,a, 

(17) 

where the well-known summation convention is 
employed. Substitution of the co-ordinates of the four 
nodes (16) into the interpolation (17) results in a set of 
four linear equations 

ai = cij~j 

or (18) 

4 = Nj+j2 

where Nj = licij are the shape functions of the finite 
element. The matrix (c- ‘)ij = Zj(qi, &) is non-singular. 
Differentiation ofthe interpolation, 4, with respect to 5 

FIG. 2. Four-node computational molecule. 0 Nodal points 
= interpolation points. * integration points = projection 

points. 

HMT 26:X - G 

results in 

Again, the functions aN,fae can be expressed as linear 
combinations of the shape functions 

aN. 
2 = NiDDHij 
at 

By substitution of the co-ordinates of the four nodes 
(16) and by making use of N,(node j ) = a,,, the matrix 

of coefficients, DDK,, is found to be 

DDK,, = % (node i) (19) 

A similar matrix, DDH,,, is obtained for the differential 
operator B/as. The matrices DDH, and DDKij are the 
so-called “differentiation matrices” [ 16, 173 or 
“derivation matrices” [18]. 

The four-node molecule (16) is used as a parent- 
element for a general quadrilateral derived from it by 
isoparametric mapping [ 193 

x = Nixi, y = Niyi. 

Matrix-equivalents, DDX, and DD Kj, corresponding 
to differentiations, a/&x and ajay, in the (x, y) plane can 
be found from equation (19) in the following way : 

(20) 

where J is the Jacobian determinant given by 

J _ ax ay ax ay, 

aq x at all 

The functions a(x, y)/a(q, 5) and J are linear in ‘I, 5, and 
they can conveniently be evaluated at the element 
midpoint. In addition, a matrix representation for 
operators containing functions is needed. If it is 
required that a product-function, f. 4, lies within the 
element vector space, then it is obvious that 

f* 4 = Ni(f* 4)p (21) 

As a consequence, the elementary function matrices are 
diagonal, the non-zero elements being the values of the 
function at the element nodes [13,14]. When the value 
of 4 = N& is evaluated at a certain point, p, in the 
element this is called a projection. Any universal least 
squares finite element has as many projection points, or 
integration points, as it has nodes, or interpolation 
points (Fig. 2). The evaluation of the interpolation 
polynomials at the projection points is summarized in a 
matrix, Pij, the so-called projection-matrix 

Pij = Nj(point i). (22) 

The universal matrices DDX,, DDxj and P, are 
worked out explicitly for a general quadrilateral with 
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four integration points, and they are coded in a 
FORTRAN routine with the name QUAD4. Using 
these universal matrices from QUAD4, it is very simple 
to construct approximations for the equations, e.g. for 
the system of equations (5) and (13H15). All these 
approximations are characterized by a relationship of 
the form 

r = N,A,,$, (23) 

where r is the residual of the equations to be minimized, 
N, the appropriate set of shape functions defined by 

equation (18), $j the vector of unknowns, and Aij the so- 
called ‘approximation matrix’ of the governing 
equations. 

The approximation matrix, A,,, contains all the 
information of the problem discretized for the element 
under consideration. To apply the matrix method 
conveniently, the equations must be presented in a 
somewhat different form. As an example, for an axially 

symmetric Row field without circulation around the 
axis of symmetry, equations (5) and (13) with constant 1 
can be written as 

where x and y represent the co-ordinates in radial and 
axial direction respectively, i.e. x = r and y = Z. The 
approximation matrix, Aij, can be constructed now, 
resulting in 

A = D.!IX(I, J)“X(J) X(I)*DD Y(I, J) 
(I 

i --OOY(I,J) unx(r, J) ) , - 

with no summation over equal indices. In a similar way, 
equations (14) and (15) for the mean temperature fields. 
and equations (6) and (9) for the mean pressure field can 
be transformed into approximation matrices. 

The residual, r. of the approximating equations 
specified for a finite element like equations (1 l), is given 
by equation (23). To minimize this residual,its values at 
certain points in the element, the so-called integration 
points or projection points, p, (Fig. 2) will be considered. 

r,, = N,(p)Aij$; 

Application of the least squares minimum principle 

demands that the sum of the squares of the residuals of 
the differential equations at the integration points is 
minimized. Using the element of Fig. 2. the 
approximation, (b, is continuous at the boundaries of 
the finite elements. However, using the above- 
mentioned summation of the squares of the residuals, 
derivatives are not continuous in the complete domain 
ofinterest. As a consequence, restriction is made to first 
order equations, for which the existence of piecewise 
continuous first derivatives (and continuity of the 
function itself) is sufficient to obtain an approximate 
solution which has, of course, continuous first 

derivatives [20]. Explicitly written. 

C(P.D.E.)2 dV = 11 w,rf -: minimum 1241 
r ,’ 

where fi is the integration domain. b the element index, 
and wp the weighting factor belonging to the 
integration point, p, of the finite element molecule. 1:. 

The minimum is found by differentiation of equation 
(24) with respect to the unknowns cb,, 

CC MpN,(P)A,,Ni(P)A;,ci,, --t 1’. (25! 
r p 

Calculation is performed step by step 

AP = N,(P)& : 

E,, = 1 *vpllp/l:). IZhl 

Eii is the so-called element matrix of the problem. I‘hc 
algorithm (26) can be coded. The corresponding 
subroutine is called LSFEM (Least Squares Finite 
Element Method). The least squares procedure of 
equation (25) is completed by adding the element 
matrices, Eij; to theglobal matrix. S,,, in the usual tinite- 

element way 

To this global matrix, boundary conditions are added 
at the appropriate places. 

Finally, the choice of the integration points will be 
mentioned without going into the details of the 
justification for this choice. For a subdivision in h” 
elements, four integration points are chosen ‘11 
distances of approximately h/N from the centre of the 
element, where h is the size ofthe element (Fig. 2). In this 
way, the element has an accuracy of O(h’), and the 

matrix, Sij, will not be singular. 

4. RESULTS AND CONCLLSIOY 

The conclusion of Section 2.2. that the mean llou 
pattern may be considered as irrotational, will he 
illustrated with a numerical experiment. For ;t 
cylindricallysymmetricsteady flow without circulation 
around the axis of symmetry and with uniform inflow 
and outflow profiles, the streamlines have been 
calculated. For that purpose, equations (5) and (9) have 
been transformed to the representation by an 
approximation matrix (Section 3) and they are solved 
by the least squares finite element package described m 
Section 3. Also, the original equations (5) and (12) were 
solved with the inflow boundary condition W = 0. Since 
this latter system is non-linear, a generalized Newton 
iteration procedure was used (ref. [20], Ch. 5.3). For 
both cases, the results are shown in Figs. 3 and 4. The 
geometrical data of the tube bank used in this example 
are presented in Table 1. 

Further process data are : shell-side mass flow rate 
360 kg s-- ‘, tube-side mass flow rate 256 kg s I, shell.. 

side inflow temperature 49O’C, and tube-side inflow 
temperature 349°C. 
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Table 1 

Inner shell diameter 
Outer shell diameter 
Length of tube bank 
Height of inflow and 
Outer tube diameter 
Inner tube diameter 
Pitch (triangular) 
Number of tubes 

outflow openings 

0.460 m 
0.960 m 
7.154 m 
0.370 m 
0.0210 m 
0.0182 m 
0.0270 m 
846 

From the numerical results, it turned out that the 
approximation of the flow field by irrotational flow 
theory compares with a calculation with the original 
equations to within a maximum local error of 10% near 
the edge of the inflow boundary and the outer shell. AS a 
consequence of these two different flow models, the 
maximum difference in temperature for the two 
calculations is 7”C, or 5%. This local difference is 
situatedat the connection between lower tubesheet and 

central tube. 
In the following discussion, numerical results will be 

compared with experimental data. These data have 
been obtained from a test model of a tube bank with the 
dimensions described in Table 1. Calculated and 
measured axial shell-side temperature profiles are 
shown in Fig. 5, and calculated and measured shell-side 

721 , 

Y!o7- 

693 - 

!'"l 6.79- 

6,72- 

6.51 

1 

FIG. 3. Shell-side streamlines in inflow region. In calculation 
with the original equations R, = 34[m-“” SK”‘] and 
RI, = 1.3[m-4’5 s-“~]. Differences between calculation with 
the original equations and calculation with irrotational 

flow theory are too small to be visible in the figures. 

7.21 

7.1L 

7.07 

zca 

6.93 

I 
6.86 

z[ml 
6.79 

6.72 

6.6: 

6.58 

6.51 

6.1 1 

FIG. 4. Shell-side isotherms in inflow region ; see also Fig. 3. 

_ 7.0 
E 

OII 
333 Loo La3 

- SHELLf%x TEPERA%E L”y 
FIG. 5. Shell-side axial temperature. A calculated values at 
outer shell, 0 calculated values at centre ofshell, 0 calculated 
values at inner shell, + measured values at outer shell, x 
measured values at centre of shell, @ measured values at inner 

shell. 
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FIG. 6. Calculated and measured shell-side and tube-&e outflow temperatures at the same conditions 3’1 IN 
Fig. 5. 

and tube-side temperatures at the outflow boundaries 
are shown in Fig. 6. 

To account for boundary effects. the shell-side 
porosity at the outer shell has been increased by a factor 

of 1.25 over a radial distance of0.027 m, i.e. in the tube 
bank, y = 0.7257 and near the outer shell, ;’ = 0.9071. 
Further input data are presented in Table 2. 

Table 2 
.._ .-. 

Fig. 5&6 7 8 
Shell-side mass flow rate (kg s I ’ ) 381 80 139 
Tube-side mass flow rate (kg s ’ 1 267 if1 89.4 
Shell-side inflow temperature f’ C) 461 463 455 
Tube-side inflow temperature (‘0 401 344 391 

L60 
T 

.- 
I 

/ 

I 

tn Fig. 7 it can be observed that. for low v-alues of the 
shell-side mass fiow rate, the description without 
natural convection is less satisfactory than these fitr 
higher mass flow rates. In Fig. 8, rather large 
temperature differences in the tangential direction 
account for the scatter in the experimental data. This 
example shows the limits of a description with axial 
symmetry and without circulation around the central 

tube. 
Our linal conclusion is that the Huid tube 

continuum model presented in this paper is a useful and 
accurate tool for the prediction of the Ihermai- 
hydraulic behaviour ofshell-and-tube heat oxchanger~. 
If only forced convection is considered. the mean Ifow 
pattern may be considered to be irr~~ta~~~~~~al. and 

---- DISTANCE [Ml 

FIG. 7. Calculated and measured shell-side and tube-side outflow temperatures at low shell-s,de mass AOW 
rates. 
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360 
OaO 0.06 0.12 al8 0,2L 030 036 QL2 OL0 

-DSTANCE [M 1 

FIG. 8. Calculated and measured shell-side and tube-side outflow temperatures at low tube-side mass flow 
rates. 

consequently only a simple linear system of equations 
must be solved. 
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APPENDIX 

DERIVATION OF THE FLUID-TUBE 
CONTINUUM EQUATIONS 

The momentum equation 

C. Truesdell, The Kinematics of Vorticity, Indiana 
University Press, Bloomington (1954). 
R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport 
Phenomena. John Wilev, New York (1960). 

It has already been pointed out that the flow around the 
tubes is described by the continuity equation (1) and the 
Navier-Stokes equations (2). Hence, these equations should 
form the starting point of the derivation of the fluid-tube 
continuum approximation. Taking the scalar product of 
equation (2) with v, and integrating over a piece of fluid, Q*(t), 
with closed boundary, Xl*(t), moving with the fluid, results in 

13. 

14. 

15. 

16. 

17. 

18. 
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(ref. (121, Ch. 3.3) 

_ (p-pg. r)(v . n) dS* 

(v.v)dV*pq v*V’v dV*. (Al) 

The last term of equation (Al) can be split into two parts, 

x (D:D)dV*-21 
II 

(v.D).n dS* = &+J, (A2) 
xl*@, 

where D = (Vv + vV)/2 is the deformation tensor. The first 
term on the RHS of equation (A2), +,, represents the viscous 
dissipation in the volume Q*(t), and the second term, J,, 
represents the rate of viscous energy transport from one piece 
of fluid to another. 

The kinetic energy, Tk. of the fluid volume Q*(t) is given by 

Tk = ; 
Isc 

(v.v)dV*. (A3) 
x1*,1, 

Since on the rigid tube boundaries the no-slip condition, v = 0, 
holds, the surface integrals in equations (A 1) and (A2) have no 
contribution from these boundaries; only the boundaries with 
adjacent fluid volumes contribute. This fact makes it possible 
to consider another volume, Q, with boundary dQ not only 
containing liquid, but also containing tubes. To introduce 
such a ‘fluid-tube mixture’, the fluid-tube domain under 
consideration is divided into subdomains, $2. These 
subdomains are sufficiently large to enclose at least one cross- 
section of a tube. Of course, this partitioning can be done in an 
infinity of ways, and in Fig. 9 only two possibilities are shown. 

It can be proved that the ratio of the two volumes, a*/!& is 
equal to the mean ratio of the two surface areas, an*/~?Q, 
provided that the parts of X2* at the tube walls are not 
accounted for. For the part of the surface normal to the z-axis 
this is immediately clear, and in the example of Fig. 9 this ratio 
is equal to 1 - nd2/4ab. For the part of the surface normal to the 
x-axis, the surface area not in contact with the tubes is equal to 
bAz in the configuration of Fig. 9(a), and it is equal to (b - d)Az 
in the configuration of Fig. 9(b). 

An elementary calculation shows that the mean vaiu~. 
?I?*, over an interval of the s-axis with length (1. i\ eqmti 
to (h ~ nd’:4rr)Az. and this means that the mean value of the 
ratio of the two surfaces, ?pi* and ~32. is equal to XI* X2 
1 ~ nd2!4ab. A similar conclusion holds for the mean surfac< 
area not m contact with the tubes, normal to the _v-axis .2s <I 
consequence. it is possible to define infinitesimal volumes. d t‘. 
and mean infinitesimal surface areas, dS, in such a way that 
d V’d V* : dS!dS* = l/y. where 1’ is the so-called porostty. <\I 
mean permeability, defined by 7 x R*Q (7fi*!?Q. In thi\ 
way, a dilatation of the co-ordinate system 1s Introduced such 
that the volumes, lsjn d V, respectively surface areas, si,.,j dS. 
are equal to the volumes, respectively surface areas i)f the 
‘fluid~~tube mixture’. The value of the surface integral in 
equation (Al) depends on the choice of the boundary. i’:Q* 
different values will be obtained for the configurations of Fig,. 
9(a) and(b). respectively. From a statistical point of view. II 1~ 
natural to use the mean value. c’R*, for the part of ?R* not II? 
contact with the tubes and, since the part of the surface in 
contact with the tubes does not contribute to the surfact. 
integral, equation (Al) is written as 

n ,. . 

.i! ?L)l,l 
(ij-yg-r)(v.n)7dS-~~~ -td,tJ, i.441 

The force. F. applied to the moving fluid- tube element 1s grvcn 

by 

In equation (A5) use has been made of Gauss’s divergence 
theorem to transform the surface integral into a volume 
integral in the delated co-ordinate system. Now a mean 
velocity, Q, will be defined in such a way that 

in 

il. 
.i? 

(p--pg.r)ny dS = 
i?‘ 

(p- pg.r)(v.n): dS 

and equation (A4) can be written as 

d7; 
F.4 =t +&+J, 

___ __I_ --- - _A--__ -I_ _ - ---_t --- - -f-*,- 

(a) FIG. 9. Subdivision of fluid-tube domain. (b) 

fhhl 
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Equation(A6)representsanexpressionforthecomponentofF 
in the direction of 4. If it is possible to express T., 4, and J, in 4, 
the component of F in the direction of 4 can be determined 
from equation (At?). Furthermore, if for the components of F 
normal to 4 an additional expression can be obtained, F(il) is 
known completely. In that case equation (A5) may be 
considered as the equation of motion in the fluid-tube 
continuum. 

To find the required expressions, the kinetic energy of the 
moving volume will be related to the mean velocity, Q, and to a 
co-ordinate of the moving volume q, defined by 

q = 
j 

#)dt 

i.e. 

TL = WI,(i). 

If Tk has a quadratic form, T. = +mij(q)&jj, wheremzj = mii is a 
positive definite tensor, and if, in addition, the system were 
Lagrangian, we would find for F = F, i = I, 2,3, 

(A71 

From equation (A7) it is observed that, for steady rectilinear 
flow, the force F depends quadratically on the velocities 4. 
From equations (A6) and (A7) it is found that for such a system 
#, + JI, = 0. Also, since mij does not depend on the flow 
direction, dm,,/dq, = 0 for symmetry reasons and F = 101. ij, 
i.e. there is no force required to maintain a steady flow. This 
casejust describes irrotational flow, which is Lagrangian with 
a positive definite so-called virtual mass tensor (ref. [9], arts. 
135 and 136), where V*v = 0 (i.e. gh,+J, = 0), and where a 
steady flow has no resistance, provided that some symmetry 
conditions are satisfied (d’Alembert’s paradox, [21]). 

For general, not necessarily irrotational, flow, the following 
expression can be derived from equation (A6) : 

The flow in a tube bank is far from irrotational. In general, it 
will be fully turbulent. From steady-state experiments it is 
known that, in that case, the force has the direction of the 
velocity, 4, and that the form drag, 

plus the viscous drag, (4,+ J&j, can be written together in a 
quadratic form, rather similar to equation (A7) for steady 
irrotational flow, 

In equation (A8a), k depends slightly on the magnitude of 4, 
and k also depends on the direction of 4. The form drag is 
almost zero for flow parallel to the tubes, and the viscous drag 
is almost negligible with respect to the form drag for flow 
normal to the tubes. 

Since no experimental data are available for the 
acceleration term, 

the expression m = ij from irrotational flow theory will be taken 
when unsteady flow is considered, thus assuming that an 
unsteady irrotational flow is superposed to the (non- 
irrotational) steady flow. In this way the following expression 

results : 

F = rn*q+$klipl& (A9) 

The values m and k are porportional to the fluid volume, yIl(z), 
under consideration. Consequently, equation (A9) may be 
written as 

V@-pg.r)dV 

dV (AlO) 

where 

M=@(w jjjndV) 
and 

K=W(yp jjj*dV). 

For II’ adjacent fluid elements i, i = 1 . ..N. the following 
expression, from equation (AlO), holds : 

1 N -- 
c jjj 

V(p-pg*r)dV 
Pi=1 ni 

SSf 
dV. (All) 

n, 

Since the volume elements Qi have arbitrary size (but are large 
enough to contain at least one tube), it is an acceptable 
approximation to assume continuous functions ii = q(r), 
Q = Q(r), M = M(r), K = K(r) instead of the discrete values 
iii, ii, Mi and Ki. Equation (Al 1) then becomes 

&(p-pg*r)dV = JJJ (~.~+~~l~l~)d~ (Al2) 
SIP n 

where a is any sufficiently large volume. For mathematical 
convenience, however, the requirement of a minimum volume 
to make sense for the equation will be dropped, and when 
replacing 4 by t and 4 by D?/Dt, the following equation is 
finally found : 

(- > fl -g*r = 0 (A12a) 
P 

where p represents a mean pressure over a sufficiently large 
volume, 

The continuity equation 
In a similar way, the continuity equation for another mean 

velocity, (v), can be derived from equation (1) as follows: 
equation (1) is equivalent to 

jjj/v dV* = jjana(r*n)dS* = 0. (A13) 

The surface integral in equation (A13) has no ~ntribution 
from the rigid tube boundaries, where Y = 0, and, as with the 
derivation of equation (A4), it is possible to write equation 
(A13) as 

ss 2 * nh dS = O. 
Now a mean velocity, (v). is defined such that 

For N adjacent fluid elements i, i = l... N, the following 
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expression holds for the (v), : 

and again, the discrete values, (v),. may be replaced by 
continuous values. (v)(r). resulting in 

V. ];,(v> 1 = 0. iA 

In this latter expression it is also assumed that ;J = y(r), thus 
automatically accounting for regions with different mean 
porosities. Obviously, (v) represents the volumetric flow rate 
per unit surface area of the wetted surface (and not of the total 
‘fluid-tube mixture’ surface). Since also V represents a mean 
velocity related to the wetted surface, it is an acceptable 
approximation toidentify the twomean ve1ocities.i.e. (v) = V. 
and 

v (;‘<I : 0. 

7’he temperature equation 

(AIS) 

The derivation of the shell-side equation for the mean 
temperatures, r, follows almost immediately and will not be 
considered here in further detail. 

The resistance Jorw 

Finally, a slight modification of equation (A12) will be 
proposed: equation (A12) can be written in the form of 

equation (6) with a force distribution, Q. gJven hy 

where I is the unit tensor, and 

For irrotational how parallel to the tubes .%4 := 1. and for 
irrotational flow normal to the tubes, j%f ,241. with M .a 1. 
since immersion of obstacles in the liquid increases the klncttc 
energyofthemotion with respect to the kineticcnergy without 
theseobstacles(see Kelvin’s theorem 191). However, the flow is 
far from irrotational and, therefore. Kelvin’s theorem does not 
hold. Hence. as an approximation. it will bc assumed that for 
steady flov+ the term (M 1). (i . VV) is already included in the 
term i K]v]?. Consequently. Q will be grv’en by 

For unsteady how. the value of M WIII bc obtained lrom 
irrotational flow theory, and in a forthcoming paper. an 
explicit expression for M will bc presented. In this paper 
restriction will be made steady flows. i.e iU ‘i, 0 

EQUATIONS DU MILIEU CONTINU POUR LA DESCRIPTION DU COMPORTEMENl 
THERMOHYDRAULIQUE DES ECHANGEURS DE CHALEUR 

R&me On a etudie le soi disant modele du “milieu continu tube-fluide” pour la descrtptton du 
comportement thermohydraulique des echangeurs de chaleur, avec une attention speciale pour la bonne 
formulation des conditions aux limites. On donne aussi la derivation des equations a partir des principes de 
base. Arrive a un systemelintaired’tquations partielles differentielles : l’equation de Laplaceet deux equations 
lineaires de convection, une solution numtrique est trouvee avec la methode des elements finis basee sur la 
principe des moindres car&. Finalement, les resultats numeriques sont compares avec les don&es obtenues 

des experiments. II y a une ressemblance satisfaisante. 

KONTINUUMGLEICHUNGEN ZUR BESCHREIBUNG DER THERMOHYDRAULISC‘HEN 
FAHIGKEIT VON WARMETAUSCHERN 

Zusammenfassung Der sogenannte Fliissigkeitsrohre Kontinuumansatz, urn die thermohydrauhsche 
Fahigkeit von Warmetauschern beschreiben zu kiinnen. wird kritisch betrachtet. Insbesondere ist die 
korrekte Formulierungder Randbedingungen beachtet worden und ist such eine Herleitungder Gleichungen, 
ausgehend van der Grundprinzipien, presentiert worden. Das resultierende System gekuppelter partiellcr 
Differentialgleichungen: eine LaplacescheGleichung andzwei lineare konvektive Gleichungen, ist numerisch 
gel&t worden mit einer finiten Elementenverfahren, basierend auf einem kleinsten Quadraten 
Minimumprinzip. Schliesslich sind die numerischen Resultate mit den experimentellen Daten verglichen 

worden. Die Ubereinstimmung ist gut. 

MCHOJTb30BAHME YPABHEHMI? CIUIOIIIHOI? CPEAbI fln5I PAC’IETA OGTEKAHMR 
KO’IKYXA M IIPO@HnEI? TEMIIEPATYP B TEIIJIOOEMEHHMKAX 

AmioTaunn AaH KpHrHBecKHti 0630~ raK Ha3bJBaeMoro Merona cnJrottmoii cpenbt, HcnoJrb3yeMor o 
a-311 0nHcaHHB repMorunpaBnHHecKor0 pemeMa pa6orbJ TenJJ006MeHHWKOB. QCO6Oe BHH,MaHHe 
yJJe:re”O KOppeKTHOfi @,OpMyJHIpOBKe rpaHHHHb,X yC.nOBHH. AaH BblBOa OCHOBHbJX ypaBHeHHii. 
IIorty~emfan B pesynbrare nuHeiiHas cHcreMa im~+epeHuHanbHbrx ypaBHeHHB B HacrHbJX npoH3B03- 
HblX ypasHeHHe Jlannaca H nBa JtHHeRHbJx ypaBHeHHn KoHBeKuHH pemeHa HHcneHHo Meroitohl 
KoHeHHbtx 3:reMeHroB. 0cHoBa~HoM Ha npmtuune bnimibrybra nan~enbumx Ksaapa~ros. M uaKoHeu. 
rrposeneuo cpaeuetme VHCIteHHblX pesynbraros c 3KCnepHMeHTaJlbHbrMH LWHHbtMH H noJryBeH0 HX 

xopomee CoBnaneHHe. 


